Matplotlib

Transparency

Scatter plots can be enhanced by using transparency (al-
pha) in order to show area with higher density. Multiple scat-
ter plots can be used to delineate a frontier.

X = np.random.normal(-1, 1, 500)
Y = np.random.normal(-1, 1, 500)
ax.scatter(X, Y, 50, "0.0", 1lw=2) # optional
ax.scatter(X, Y, 50, "1.0", 1lw=0) # optional
ax.scatter(X, Y, 40, "C1”, 1lw=0, alpha=0.1)

Rasterization

If your figure has many graphical elements, such as a huge
scatter, you can rasterize them to save memory and keep
other elements in vector format.

X = np.random.normal(-1, 1, 10_000)

Y = np.random.normal(-1, 1, 10_000)
ax.scatter(X, Y, rasterized=True)
fig.savefig(“rasterized-figure.pdf”, dpi=600)

Offline rendering

Use the Agg backend to render a figure directly in an array.

from matplotlib.backends.backend_agg import FigureCanvas
canvas = FigureCanvas(Figure()))

... # draw some stuff

canvas.draw()

Z = np.array(canvas.renderer.buffer_rgba())

Range of continuous colors

You can use colormap to pick from a range of continuous
colors.
X = np.random.randn(1000, 4)
cmap = plt.get_cmap(”Oranges”)
colors = cmap([0.2, 0.4, 0.6, 0.8])

ax.hist(X, 2, histtype='bar’, color=colors)

Text outline

Use text outline to make text more visible.

import matplotlib.patheffects as fx

text = ax.text(0.5, ©.1, "Label”)

text.set_path_effects([
fx.Stroke(linewidth=3, foreground='1.0"),
fx.Normal()])

Label

Multiline plot

You can plot several lines at once using None as separator.

XY =11, []
for x in np.linspace(@, 10*np.pi, 100):

X.extend([x, x, None]), Y.extend([©, sin(x), None])
ax.plot(X, Y, "black”)

Dotted lines

To have rounded dotted lines, use a custom linestyle and
modify dash_capstyle.

ax.plot([0,1], [0,0
linestyle =
ax.plot([@,1], [1,1
linestyle =

, €17,
0, (0.01, 1)), dash_capstyle="round")
» €17,
0, (0.01, 2)), dash_capstyle="round")

Combining axes

You can use overlaid axes with different projections.

ax1 = fig.add_axes([0,0,1,1]
label="cartesian”)
ax2 = fig.add_axes([0,0,1,1]

label="polar”
projection="polar")

~

Colorbar adjustment

You can adjust a colorbar’s size when adding it.

im = ax.imshow(Z)

cb = plt.colorbar(im,
fraction=0.046, pad=0.04)
cb.set_ticks([])

Taking advantage of typography

You can use a condensed font such as Roboto Condensed
to save space on tick labels.

for tick in ax.get_xticklabels(which="both"):
tick.set_fontname("Roboto Condensed”)

—,— 77—
02 04 06 08 12 14 16 18 22 24 26 28 32 34 36 38 42 44 46 48
0 1 2 3 4 5

Getting rid of margins

Once your figure is finished, you can call tight_layout()
to remove white margins. If there are remaining margins,
you can use the pdfcrop utility (comes with TeX live).

Hatching

You can achieve a nice visual effect with thick hatch pat-
terns.

cmap = plt.get_cmap(”Oranges”)
plt.rcParams[hatch.color’] = cmap(8.2)
plt.rcParams[hatch.linewidth’'] = 8
ax.bar (X, Y, color=cmap(0.6), hatch="/")

2018 2019

Read the documentation

Matplotlib comes with an extensive documentation explain-
ing the details of each command and is generally accom-
panied by examples. Together with the huge online gallery,
this documentation is a gold-mine.

Matplotlib 3.5.0 handout for tips & tricks. Copyright (c) 2021 Matplotlib Development
Team. Released under a CC-BY 4.0 International License. Supported by NumFOCUS.

